
www.racon.at
www.grz.at

Service Development and
Architecture Management for an

Enterprise SOA

Thomas Kriechbaum, RACON Software GmbH, Austria
Georg Buchgeher, Software Competence Center Hagenberg, Austria

Rainer Weinreich, Johannes Kepler Universität Linz, Austria

Seite 2

Setting

§  Cooperation on various topics for several years

Scientific
Research

Applied
Research

Application

Seite 3

GRZ IT Group

§  Founded in 1971; employs now more the 780 persons

§  One of the major IT-service provider in Austria with the
business lines

–  Computing Center
–  Software Development
–  General IT-services

§  Comprises three companies
–  GRZ IT Center GmbH
–  RACON Software GmbH
–  PROGRAMMIERFABRIK GmbH

§  Raiffeisen Landesbank Oberösterreich AG as general owner

Seite 4

System Overview

§  Enterprise SOA is organized in applications that are clustered in
business domains

§  Applications are decomposed in modules, which are the unit of

versioning and deployment

§  Modules have to follow the blueprints of the reference architecture and
guidelines of the integration architecture

Seite 5

System Overview

§  Different types of UI-Modules address different communication channels
–  Mobile Apps è end customers
–  Web-Applications è end customers, banking staff
–  Rich Client Applications è business customers, banking staff

§  Business logic is primarily implemented in Service- or Mainframe-
Modules

–  the core banking system on the mainframe is not treated as legacy system
–  the core banking system is integrated via web-service facades

§  A set of infrastructure modules provide cross cutting functionality like
security, journaling, monitoring or output management

§  170 Service-Modules with about 1700 services

Seite 6

Stakeholders

Seite 7

Service Development Process

§  Embedded in a global product development process
–  Product managers and domain experts gather and prioritize requirements
–  Several projects are set up to implement new product version
–  Project (can) span more architectural layers (e.g. UI, service, mainframe)

§  Service-Lifecycle governed by guidelines und directives
–  Service identification
–  Service implementation
–  Service operation and monitoring
–  Service deactivation

§  Defined quality gates have to be passed

Seite 8

Service Development Process

Seite 9

Service Development Process

Seite 10

Service Development Process

Seite 11

Service Technology Stack

Seite 12

Service Development Practices

§  Model-Driven Development
–  Supports top-down-strategy for specifying and implementing services
–  Service-interface and entities are modeled using UML
–  Custom UML-profile and UML-libraries allows to specify additional information
–  Code generation is fully integrated in the Maven-build-process
–  Has been proven to be an important success factor

§  Custom Annotations for Architectural Information
–  CDI-based jRAP-SOA Annotations to classify specific components
–  Allow to control runtime-behavior (Exception-Handling, Security, …)
–  Are used to extract architectural information

Seite 13

Service Development Practices

§  Service Registry
–  Stores information about service-modules, services and dependencies between

service-consumers and service-providers
–  Information is based on a logical information model to reduce tool and vendor-

dependency
–  Many different stakeholders with different

needs (see project-setting)
–  Challenge to keep information up-to-date

Seite 14

Service Development – Goal

15 min for implementing
a Web-Service for an
existing Mainframe-Module

Seite 15

Service Development – Create Project

identifying application

identifying module

Seite 16

Service Development – Model Service Interface

Seite 17

Service Development – Generate Code

endpoint implementations generated
(Java + WSDL)

service interfaces (Java classes) generated

client proxies for service-consumers generated
(Java + WSDL + configuration)

buiness logic + unit tests

Seite 18

Service Development – Implement Business Logic

Seite 19

Service Development – Integrate Service

§  Add dependency

§  Configure endpoint address

§  Inject service and invoke operation

<dependency>
 <groupId>at.jrap.soa.sandbox</groupId>
 <artifactId>elba-services-client</artifactId>
 <version>1.0.0</version>
</dependency>

PaymentService.endpointAddress=http://localhost:9090/elba-services_v1_0/PaymentService

@Inject
PaymentService paymentService;

DirectDebit debit = …;
paymentService.transferDirectDebit(debit);

Seite 20

Internet of Things - Strictly Confidential ;-)

Seite 21

Architecture Management (Group)

§  Planning: Definition of EA
§  Development: Evaluations and Adaptions of EA
§  Controlling: Design Support and Quality Control

Seite 22

Overview: Architecture Management
Support

Product Synchronize Extract Product

Product
-  Web Modules
-  Desktop Modules
-  Service Modules
-  Host Modules

Architecture
Information
Repository

Service
Registry

Visualization Automatic
Analysis

Quality Gate
Reviews

Developer Solution
Architect

Software
Architect

Designer Tester Quality
Manager

Seite 23

Architecture Extraction & Visualization

§  Up-to-date documentation

§  Architectural information in
implementation

§  Incremental architecture
extraction

§  Simulated component
composition

§  Architectural views

Seite 24

Architecture Extraction & Visualization

§  Up-to-date documentation

§  Architectural information
in implementation

§  Incremental architecture
extraction

§  Simulated component
composition

§  Architectural views

@Stateless	

@Service	
 	

public	
 class	
 RegistryServiceBean	

implements	
 RegistryService	
 {	

	
 	

@Inject	

private	
 ArtifactConverter	
 converter;

Manifest-Version: 1.0
Implementation-Vendor: RACON Software
GmbH
Application-Domain: ORG/IT
Application-ShortName: EAMP
Implementation-Vendor-Id: RACON Software
GmbH
Module-ShortName: eampsrv
Module-Version: 1.0

Seite 25

Architecture Extraction & Visualization

§  Up-to-date documentation

§  Architectural information in
implementation

§  Incremental architecture
extraction

§  Simulated component
composition

§  Architectural views

Seite 26

Architecture Extraction & Visualization

§  Up-to-date documentation

§  Architectural information in
implementation

§  Incremental architecture
extraction

§  Simulated component
composition

§  Architectural views

Seite 27

Architecture Extraction & Visualization

§  Up-to-date documentation

§  Architectural information in
implementation

§  Incremental architecture
extraction

§  Simulated component
composition

§  Architectural views

Seite 28

Architecture Extraction & Visualization

§  Up-to-date documentation

§  Architectural information in
implementation

§  Incremental architecture
extraction

§  Simulated component
composition

§  Architectural views

Seite 29

Architecture Analysis and Review

§  Automatic Analysis
–  Completeness
–  Consistency
–  Compatibility with

Reference Architecture
§  Manual Analysis

–  Quality Gate Reviews

Seite 30

Architecture Analysis and Review

§  Automatic Analysis
–  Completeness
–  Consistency
–  Compatibility with Reference

Architecture
§  Manual Analysis

–  Quality Gate Reviews

Seite 31

Demo

Seite 32

Lessons Learned

§  Model-Driven Development (MDD)
+  facilitates service development
+  No boilerplate code, focus on business logic
+  supports migration to new technology stacks

§  Model-Based Architecture Management
.  models need to reflect implementation
+  supports both automatic and manual architecture analysis
+  supports governance activities (e.g., repository sync)
-  requires metadata-enhanced implementations (declarative metadata)

Seite 33

Current and Future Work

§  Service Development
–  Investigation of RESTful services
–  Synchronization with Service Registry/Repository
–  Add runtime information to service registry

§  Architecture Management
–  Better validation of manual review support,
–  Provide global system views (through integration of client and backend

systems)
–  Fine tuning (e.g., extraction of publish/subscribe relationships)

Seite 34

Research Challenges

§  Architecture and Testing
–  Facilitate architecture information to identify components and systems that

have to be retested based on change impact analysis
§  Architecture and Agility

–  Investigate the transition from a rather plan-driven development process to
more agile methodologies (developer driven)

–  How to establish agile methodology within the required regulatory
requirements and existing organizational structures in the financial domain

§  Architecture as a Service
–  Provide architectural information and services to different stakeholders

(ongoing work)
§  Architecture Knowledge Sharing

–  Develop means to provide architectural information to exactly the
organizational units and architects that might by affected by a change.

Seite 35

Thank you!

Questions?

